Coverart for item
The Resource The Princeton companion to mathematics, editor, Timothy Gowers ; associate editors, June Barrow-Green, Imre Leader

The Princeton companion to mathematics, editor, Timothy Gowers ; associate editors, June Barrow-Green, Imre Leader

Label
The Princeton companion to mathematics
Title
The Princeton companion to mathematics
Statement of responsibility
editor, Timothy Gowers ; associate editors, June Barrow-Green, Imre Leader
Title variation
  • Companion to mathematics
  • Mathematics
Contributor
Subject
Genre
Language
eng
Summary
This text features nearly 200 entries which introduce basic mathematical tools and vocabulary, trace the development of modern mathematics, define essential terms and concepts and put them in context, explain core ideas in major areas of mathematics, and much more
Cataloging source
DLC
Dewey number
510
Illustrations
illustrations
Index
index present
LC call number
QA11.2
LC item number
.P745 2008
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorDate
1953-
http://library.link/vocab/relatedWorkOrContributorName
  • Gowers, Timothy
  • Barrow-Green, June
  • Leader, Imre
  • Princeton University
http://library.link/vocab/subjectName
  • Princeton University
  • Princeton University
  • Mathematics
  • Mathematics
  • Mathematik
  • Mathematiker
  • Mathematik
Label
The Princeton companion to mathematics, editor, Timothy Gowers ; associate editors, June Barrow-Green, Imre Leader
Link
http://catdir.loc.gov/catdir/toc/ecip0818/2008020450.html
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • The development of abstract algebra
  • Algorithms
  • The development of rigor in mathematical analysis
  • The development of the idea of proof
  • The crisis in the foundations of mathematics
  • Mathematical concepts: The axiom of choice
  • The axiom of determinacy
  • Bayesian analysis
  • Braid groups
  • Buildings
  • Introduction:
  • Calabi-Yau manifolds
  • Cardinals
  • Categories
  • Compactness and compactification
  • Computational complexity classes
  • Countable and uncountable sets
  • C*-algebras
  • Curvature
  • Designs
  • Determinants
  • What is mathematics about?
  • Differential forms and integration
  • Dimension
  • Distributions
  • The language and grammar of mathematics
  • Some fundamental mathematical definitions
  • The general goals of mathematical research
  • The origins of modern mathematics:
  • From numbers to number systems
  • Geometry
  • The fast Fourier transform
  • The Fourier transform
  • Fuchsian groups
  • Function spaces
  • Galois groups
  • The gamma function
  • Generating functions
  • Genus
  • Graphs
  • Hamiltonians
  • Mathematical concepts (continued):
  • The heat equation
  • Hilbert spaces
  • Homology and cohomology
  • Homotopy Groups
  • The ideal class group
  • Irrational and transcendental numbers
  • The Ising model
  • Jordan normal form
  • Knot polynomials
  • K-theory
  • Duality
  • The leech lattice
  • L-function
  • Lie theory
  • Linear and nonlinear waves and solitons
  • Linear operators and their properties
  • Local and global in number theory
  • The Mandelbrot set
  • Manifolds
  • Matroids
  • Measures
  • Dynamical systems and chaos
  • Elliptic curves
  • The Euclidean algorithm and continued fractions
  • The Euler and Navier-Stokes equations
  • Expanders
  • The exponential and logarithmic functions
  • Number fields
  • Optimization and Lagrange multipliers
  • Orbifolds
  • Ordinals
  • The Peano axioms
  • Permutation groups
  • Phase transitions
  • [pi]
  • Probability distributions
  • Projective space
  • Mathematical concepts (continued):
  • Quadratic forms
  • Quantum computation
  • Quantum groups
  • Quaternions, octonions, and normed division algebras
  • Representations
  • Ricci flow
  • Riemann surfaces
  • The Riemann zeta function
  • Rings, ideals, and modules
  • Schemes
  • Metric spaces
  • The Schrödinger equation
  • The simplex algorithm
  • Special functions
  • The spectrum
  • Spherical harmonics
  • Symplectic manifolds
  • Tensor products
  • Topological spaces
  • Transforms
  • Trigonometric functions
  • Models of set theory
  • Universal covers
  • Variational methods
  • Varieties
  • Vector bundles
  • Von Neumann algebras
  • Wavelets
  • The Zermelo-Fraenkel axioms
  • Modular arithmetic
  • Modular forms
  • Moduli spaces
  • The monster group
  • Normed spaces and banach spaces
  • Moduli spaces
  • Representation theory
  • Geometric and combinatorial group theory
  • Harmonic analysis
  • Partial differential equations
  • General relativity and the Einstein equations
  • Dynamics
  • Operator algebras
  • Mirror symmetry
  • Vertex operator algebras
  • Branches of mathematics:
  • Enumerative and algebraic combinatorics
  • Extremal and probabilistic combinatorics
  • Computational complexity
  • Numerical analysis
  • Set theory
  • Logic and model theory
  • Stochastic processes
  • Probabilistic models of critical phenomena
  • High-dimensional geometry and its probabilistic analogues
  • Algebraic numbers
  • Analytic number theory
  • Computational number theory
  • Algebraic geometry
  • Arithmetic geometry
  • Algebraic topology
  • Differential topology
  • Dirichlet's theorem
  • Ergodic theorems
  • Fermat's last theorem
  • Fixed point theorems
  • The four-color theorem
  • The fundamental theorem of algebra
  • The fundamental theorem of arithmetic
  • Gödel's theorem
  • Gromov's polynomial-growth theorem
  • Hilbert's nullstellensatz
  • Theorems and problems:
  • The independence of the continuum hypothesis
  • Inequalities
  • The insolubility of the halting problem
  • The insolubility of the quintic
  • Liouville's theorem and Roth's theorem
  • Mostow's strong rigidity theorem
  • The p versus NP problem
  • The Poincaré conjecture
  • The prime number theorem and the Riemann hypothesis
  • Problems and results in additive number theory
  • The ABC conjecture
  • From quadratic reciprocity to class field theory
  • Rational points on curves and the Mordell conjecture
  • The resolution of singularities
  • The Riemann-Roch theorem
  • The Robertson-Seymour theorem
  • The three-body problem
  • The uniformization theorem
  • The Weil conjecture
  • The Atiyah-Singer index theorem
  • The Banach-Tarski paradox
  • The Birch-Swinnerton-Dyer conjecture
  • Carleson's theorem
  • The central limit theorem
  • The classification of finite simple groups
  • Rafael Bombelli
  • François Viète
  • Simon Stevin
  • René Descartes
  • Pierre Fermat
  • Blaise Pascal
  • Isaac Newton
  • Gottfried Wilhelm Leibniz
  • Brook Taylor
  • Christian Goldbach
  • Mathematicians:
  • The Bernoullis
  • Leonhard Euler
  • Jean Le Rond d'Alembert
  • Edward Waring
  • Joseph Louis Lagrange
  • Pierre-Simon Laplace
  • Adrien-Marie Legendre
  • Jean-Baptiste Joseph Fourier
  • Carl Friedrich Gauss
  • Siméon-Denis Poisson
  • Pythagoras
  • Bernard Bolzano
  • Augustin-Louis Cauchy
  • August Ferdinand Möbius
  • Nicolai Ivanovich Lobachevskii
  • George Green
  • Niels Henrik Abel
  • János Bolyai
  • Carl Gustav Jacob Jacobi
  • Peter Gustav Lejeune Dirichlet
  • William Rowan Hamilton
  • Euclid
  • Augustus De Morgan
  • Joseph Liouville
  • Eduard Kumme
  • Évariste Galois
  • James Joseph Sylvester
  • George Boole
  • Karl Weierstrass
  • Pafnuty Chebyshev
  • Arthur Cayley
  • Charles Hermite
  • Archimedes
  • Leopold Kronecker
  • Apollonius
  • Abu Jaʼfar Muhammad ibn Mūsā al-Khwārizmī
  • Leonardo of Pisa (known as Fibonacci)
  • Girolamo Cardano
  • Gottlob Frege
  • Christian Felix Klein
  • Ferdinand Georg Frobenius
  • Sofya (Sonya) Kovalevskaya
  • William Burnside
  • Jules Henri Poincaré
  • Giuseppe Peano
  • David Hilbert
  • Hermann Minkowski
  • Jacques Hadamard
  • Mathematicians (continued):
  • Ivar Fredholm
  • Charles-Jean de la Vallée Poussin
  • Felix Hausdorff
  • Élie Joseph Cartan
  • Emile Borel
  • Bertrand Arthur William Russell
  • Henri Lebesgue
  • Godfrey Harold Hardy
  • Frigyes (Frédéric) Riesz -- Luitzen Egbertus Jan Brouwer
  • Emmy Noether
  • Georg Friedrich Bernhard Riemann
  • Wacław Sierpiński
  • George Birkhoff
  • John Edensor Littlewood
  • Hermann Weyl
  • Thoralf Skolem
  • Srinivasa Ramanujan
  • Richard Courant
  • Stefan Banach
  • Norbert Wiener
  • Emil Artin
  • Julius Wilhelm Richard Dedekind
  • Alfred Tarski
  • Andrei Nikolaevich Kolmogorov
  • Alonzo Church
  • William Vallance Douglas Hodge
  • John von Neumann
  • Kurt Gödel
  • André Weil
  • Alan Turing
  • Abraham Robinson
  • Nicolas Bourbaki
  • Émile Léonard Mathieu
  • Camille Jordan
  • Sophus Lie
  • Georg Cantor
  • William Kingdon Clifford
  • Mathematics and economic reasoning
  • The mathematics of money
  • Mathematical statistics
  • Mathematics and medical statistics
  • Analysis, mathematical and philosophical
  • Mathematics and music
  • Mathematics and art
  • Final perspectives:
  • The art of problem solving
  • "Why mathematics?" you might ask
  • The influence of mathematics:
  • The ubiquity of mathematics
  • Numeracy
  • Mathematics : an experimental science
  • Advice to a young mathematician
  • A chronology of mathematical events
  • Mathematics and chemistry
  • Mathematical biology
  • Wavelets and applications
  • The mathematics of traffic in networks
  • The mathematics of algorithm design
  • Reliable transmission of information
  • Mathematics and cryptography
Control code
ocn227205932
Dimensions
26 cm
Extent
xx, 1034 pages
Isbn
9780691118802
Lccn
2008020450
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
Other control number
9780691118802
Other physical details
illustrations
System control number
  • (Sirsi) o227205932
  • (OCoLC)227205932
Label
The Princeton companion to mathematics, editor, Timothy Gowers ; associate editors, June Barrow-Green, Imre Leader
Link
http://catdir.loc.gov/catdir/toc/ecip0818/2008020450.html
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • The development of abstract algebra
  • Algorithms
  • The development of rigor in mathematical analysis
  • The development of the idea of proof
  • The crisis in the foundations of mathematics
  • Mathematical concepts: The axiom of choice
  • The axiom of determinacy
  • Bayesian analysis
  • Braid groups
  • Buildings
  • Introduction:
  • Calabi-Yau manifolds
  • Cardinals
  • Categories
  • Compactness and compactification
  • Computational complexity classes
  • Countable and uncountable sets
  • C*-algebras
  • Curvature
  • Designs
  • Determinants
  • What is mathematics about?
  • Differential forms and integration
  • Dimension
  • Distributions
  • The language and grammar of mathematics
  • Some fundamental mathematical definitions
  • The general goals of mathematical research
  • The origins of modern mathematics:
  • From numbers to number systems
  • Geometry
  • The fast Fourier transform
  • The Fourier transform
  • Fuchsian groups
  • Function spaces
  • Galois groups
  • The gamma function
  • Generating functions
  • Genus
  • Graphs
  • Hamiltonians
  • Mathematical concepts (continued):
  • The heat equation
  • Hilbert spaces
  • Homology and cohomology
  • Homotopy Groups
  • The ideal class group
  • Irrational and transcendental numbers
  • The Ising model
  • Jordan normal form
  • Knot polynomials
  • K-theory
  • Duality
  • The leech lattice
  • L-function
  • Lie theory
  • Linear and nonlinear waves and solitons
  • Linear operators and their properties
  • Local and global in number theory
  • The Mandelbrot set
  • Manifolds
  • Matroids
  • Measures
  • Dynamical systems and chaos
  • Elliptic curves
  • The Euclidean algorithm and continued fractions
  • The Euler and Navier-Stokes equations
  • Expanders
  • The exponential and logarithmic functions
  • Number fields
  • Optimization and Lagrange multipliers
  • Orbifolds
  • Ordinals
  • The Peano axioms
  • Permutation groups
  • Phase transitions
  • [pi]
  • Probability distributions
  • Projective space
  • Mathematical concepts (continued):
  • Quadratic forms
  • Quantum computation
  • Quantum groups
  • Quaternions, octonions, and normed division algebras
  • Representations
  • Ricci flow
  • Riemann surfaces
  • The Riemann zeta function
  • Rings, ideals, and modules
  • Schemes
  • Metric spaces
  • The Schrödinger equation
  • The simplex algorithm
  • Special functions
  • The spectrum
  • Spherical harmonics
  • Symplectic manifolds
  • Tensor products
  • Topological spaces
  • Transforms
  • Trigonometric functions
  • Models of set theory
  • Universal covers
  • Variational methods
  • Varieties
  • Vector bundles
  • Von Neumann algebras
  • Wavelets
  • The Zermelo-Fraenkel axioms
  • Modular arithmetic
  • Modular forms
  • Moduli spaces
  • The monster group
  • Normed spaces and banach spaces
  • Moduli spaces
  • Representation theory
  • Geometric and combinatorial group theory
  • Harmonic analysis
  • Partial differential equations
  • General relativity and the Einstein equations
  • Dynamics
  • Operator algebras
  • Mirror symmetry
  • Vertex operator algebras
  • Branches of mathematics:
  • Enumerative and algebraic combinatorics
  • Extremal and probabilistic combinatorics
  • Computational complexity
  • Numerical analysis
  • Set theory
  • Logic and model theory
  • Stochastic processes
  • Probabilistic models of critical phenomena
  • High-dimensional geometry and its probabilistic analogues
  • Algebraic numbers
  • Analytic number theory
  • Computational number theory
  • Algebraic geometry
  • Arithmetic geometry
  • Algebraic topology
  • Differential topology
  • Dirichlet's theorem
  • Ergodic theorems
  • Fermat's last theorem
  • Fixed point theorems
  • The four-color theorem
  • The fundamental theorem of algebra
  • The fundamental theorem of arithmetic
  • Gödel's theorem
  • Gromov's polynomial-growth theorem
  • Hilbert's nullstellensatz
  • Theorems and problems:
  • The independence of the continuum hypothesis
  • Inequalities
  • The insolubility of the halting problem
  • The insolubility of the quintic
  • Liouville's theorem and Roth's theorem
  • Mostow's strong rigidity theorem
  • The p versus NP problem
  • The Poincaré conjecture
  • The prime number theorem and the Riemann hypothesis
  • Problems and results in additive number theory
  • The ABC conjecture
  • From quadratic reciprocity to class field theory
  • Rational points on curves and the Mordell conjecture
  • The resolution of singularities
  • The Riemann-Roch theorem
  • The Robertson-Seymour theorem
  • The three-body problem
  • The uniformization theorem
  • The Weil conjecture
  • The Atiyah-Singer index theorem
  • The Banach-Tarski paradox
  • The Birch-Swinnerton-Dyer conjecture
  • Carleson's theorem
  • The central limit theorem
  • The classification of finite simple groups
  • Rafael Bombelli
  • François Viète
  • Simon Stevin
  • René Descartes
  • Pierre Fermat
  • Blaise Pascal
  • Isaac Newton
  • Gottfried Wilhelm Leibniz
  • Brook Taylor
  • Christian Goldbach
  • Mathematicians:
  • The Bernoullis
  • Leonhard Euler
  • Jean Le Rond d'Alembert
  • Edward Waring
  • Joseph Louis Lagrange
  • Pierre-Simon Laplace
  • Adrien-Marie Legendre
  • Jean-Baptiste Joseph Fourier
  • Carl Friedrich Gauss
  • Siméon-Denis Poisson
  • Pythagoras
  • Bernard Bolzano
  • Augustin-Louis Cauchy
  • August Ferdinand Möbius
  • Nicolai Ivanovich Lobachevskii
  • George Green
  • Niels Henrik Abel
  • János Bolyai
  • Carl Gustav Jacob Jacobi
  • Peter Gustav Lejeune Dirichlet
  • William Rowan Hamilton
  • Euclid
  • Augustus De Morgan
  • Joseph Liouville
  • Eduard Kumme
  • Évariste Galois
  • James Joseph Sylvester
  • George Boole
  • Karl Weierstrass
  • Pafnuty Chebyshev
  • Arthur Cayley
  • Charles Hermite
  • Archimedes
  • Leopold Kronecker
  • Apollonius
  • Abu Jaʼfar Muhammad ibn Mūsā al-Khwārizmī
  • Leonardo of Pisa (known as Fibonacci)
  • Girolamo Cardano
  • Gottlob Frege
  • Christian Felix Klein
  • Ferdinand Georg Frobenius
  • Sofya (Sonya) Kovalevskaya
  • William Burnside
  • Jules Henri Poincaré
  • Giuseppe Peano
  • David Hilbert
  • Hermann Minkowski
  • Jacques Hadamard
  • Mathematicians (continued):
  • Ivar Fredholm
  • Charles-Jean de la Vallée Poussin
  • Felix Hausdorff
  • Élie Joseph Cartan
  • Emile Borel
  • Bertrand Arthur William Russell
  • Henri Lebesgue
  • Godfrey Harold Hardy
  • Frigyes (Frédéric) Riesz -- Luitzen Egbertus Jan Brouwer
  • Emmy Noether
  • Georg Friedrich Bernhard Riemann
  • Wacław Sierpiński
  • George Birkhoff
  • John Edensor Littlewood
  • Hermann Weyl
  • Thoralf Skolem
  • Srinivasa Ramanujan
  • Richard Courant
  • Stefan Banach
  • Norbert Wiener
  • Emil Artin
  • Julius Wilhelm Richard Dedekind
  • Alfred Tarski
  • Andrei Nikolaevich Kolmogorov
  • Alonzo Church
  • William Vallance Douglas Hodge
  • John von Neumann
  • Kurt Gödel
  • André Weil
  • Alan Turing
  • Abraham Robinson
  • Nicolas Bourbaki
  • Émile Léonard Mathieu
  • Camille Jordan
  • Sophus Lie
  • Georg Cantor
  • William Kingdon Clifford
  • Mathematics and economic reasoning
  • The mathematics of money
  • Mathematical statistics
  • Mathematics and medical statistics
  • Analysis, mathematical and philosophical
  • Mathematics and music
  • Mathematics and art
  • Final perspectives:
  • The art of problem solving
  • "Why mathematics?" you might ask
  • The influence of mathematics:
  • The ubiquity of mathematics
  • Numeracy
  • Mathematics : an experimental science
  • Advice to a young mathematician
  • A chronology of mathematical events
  • Mathematics and chemistry
  • Mathematical biology
  • Wavelets and applications
  • The mathematics of traffic in networks
  • The mathematics of algorithm design
  • Reliable transmission of information
  • Mathematics and cryptography
Control code
ocn227205932
Dimensions
26 cm
Extent
xx, 1034 pages
Isbn
9780691118802
Lccn
2008020450
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
Other control number
9780691118802
Other physical details
illustrations
System control number
  • (Sirsi) o227205932
  • (OCoLC)227205932

Library Locations

    • Waubonsee: Sugar Grove Campus - Todd LibraryBorrow it
      Collins Hall 2nd Floor Waubonsee Community College Route 47 at Waubonsee Drive, Sugar Grove, IL, 60554-9454, US
      41.7974 -88.45785
Processing Feedback ...