Coverart for item
The Resource A source book in mathematics, 1200-1800,, edited by D.J. Struik

A source book in mathematics, 1200-1800,, edited by D.J. Struik

Label
A source book in mathematics, 1200-1800,
Title
A source book in mathematics, 1200-1800,
Statement of responsibility
edited by D.J. Struik
Creator
Compiler
Subject
Genre
Language
eng
Member of
Cataloging source
DLC
http://library.link/vocab/creatorDate
1894-2000
http://library.link/vocab/creatorName
Struik, Dirk J.
Dewey number
510/.08
Illustrations
illustrations
Index
no index present
LC call number
QA21
LC item number
.S88
Literary form
non fiction
Nature of contents
bibliography
NLM call number
QA 21
NLM item number
S927s 1969
Series statement
Source books in the history of the sciences
http://library.link/vocab/subjectName
  • Mathematics
  • Mathematics
  • Mathématiques
  • Mathématiques
  • Mathematics
  • Grundlage
  • Mathematik
  • Mathématiques
  • Mathématiques
  • Mathématiques
  • Mathématiques
  • Mathematik
Label
A source book in mathematics, 1200-1800,, edited by D.J. Struik
Link
http://www.gbv.de/dms/hbz/toc/ht000836322.pdf
Instantiates
Publication
Bibliography note
Includes bibliographical references
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
Chapter I. Arithmetic -- 1. The rabbit problem / Leonardo of Pisa -- 2. Elementary arithmetic / Recorde -- 3. Decimal fractions / Stevin -- 4. Logarithms / Napier -- 5. The Pascal triangle / Pascal -- 6. Two Fermat theorems and Fermat numbers / Fermat -- 7. The "Pell" equation / Fermat -- 8. Power residues / Euler -- 9. Fermat's theorem for n = 3, 4 -- 10. Quadratic residues and the reciprocity theorem / Euler -- 11. The Goldbach theorem / Goldbach -- 12. The reciprocity theorem / Legendre -- Chapter II. Algebra -- 1. Quadratic equations / Al-Khwārizmī -- 2. The triparty / Chuquet -- 3. On cubic equations / Cardan -- 4. The biquadratic equation / Ferrari -- 5. The new algebra / Viète -- 6. The fundamental theorem of algebra / Girard -- 7. The new method / Descartes -- 8. Theory of equations / Descartes -- 9. The roots of an equation / Newton -- 10. The fundamental theorem of algebra / Euler -- 11. On the general theory of equations / Lagrange -- 12. Continued fractions / Legrange -- 13. The fundamental theorem of algebra / Gauss -- 14. Mathematical logic / Leibniz -- Chapter III. Geometry -- 1. The latitude of forms / Oresme -- 2. Trigonometry / Regiomontanus -- 3. Coordinate geometry / Fermat -- 4. The principle of nonhomogeneity / Descartes -- 5. The equation of a curve / Descartes -- 6. Involution and perspective triangles / Desargues -- 7. Theorem on conics / Pascal -- 8. Cubic curves / Newton -- 9. The versiera / Agnesi -- 10. Cramer's paradox / Cramer and Euler -- 11. The bridges of Königsberg -- Chapter IV. Analysis before Newton and Leibniz -- 1. Center of gravity / Stevin -- 2. Integration methods / Kepler -- 3. On infinites and infinitesimals / Galilei -- 4. Accelerated motion / Galilei -- 5. Principle of Cavalieri / Cavalieri -- 6. Integration / Cavalieri -- 7. Integration / Fermat -- 8. Maxima and minima / Fermat -- 9. Volume of an infinite solid / Torricelli -- 10. The cycloid / Roberval -- 11. The integration of sines / Pascal -- 12. Partial integration / Pascal -- 13. Computation of [pi] by successive interpolations / Wallis -- 14. The fundamental theorem of calculus / Barrow -- 15. Evolutes and involutes / Huygens -- Chapter V. Newton, Leibniz, and their school -- 1. The first publication of his differential calculus / Leibniz -- 2. The first publication of his integral calculus / Leibniz -- 3. The fundamental theorem of calculus / Leibniz -- 4. Binomial series / Newton and Gregory -- 5. Prime and ultimate ratios / Newton -- 6. Genita and moments / Newton -- 7. Quadrature of curves / Newton -- 8. The analysis of the infinitesimally small / L'Hôpital -- 9. Sequences and series / Jakob Bernoulli -- 10. Integration / Johann Bernoulli -- 11. The Taylor series / Taylor -- 12. The analyst / Berkeley -- 13. On series and extremes / Maclaurin -- 14. On limits / D'Alembert -- 15. Trigonometry / Euler -- 16. The vibrating string and its partial differential equation / D'Alembert, Euler, Daniel Bernoulli -- 17. Irrationality of [pi] / Lambert -- 18. Addition theorem of elliptic integrals / Fagnano and Euler -- 19. The metaphysics of the calculus / Euler, Landen, Lagrange -- 20. The brachystochrone / Johann and Jakob Bernoulli -- 21. The calculus of variations / Euler -- 22. The calculus of variations / Lagrange -- 23. The two curvatures of a curved surface / Monge
Control code
ocm00442245
Dimensions
27 cm.
Extent
xiv, 427 pages
Lccn
68021986
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
Other physical details
illustrations
System control number
  • (Sirsi) 92930
  • (OCoLC)00442245
Label
A source book in mathematics, 1200-1800,, edited by D.J. Struik
Link
http://www.gbv.de/dms/hbz/toc/ht000836322.pdf
Publication
Bibliography note
Includes bibliographical references
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
Chapter I. Arithmetic -- 1. The rabbit problem / Leonardo of Pisa -- 2. Elementary arithmetic / Recorde -- 3. Decimal fractions / Stevin -- 4. Logarithms / Napier -- 5. The Pascal triangle / Pascal -- 6. Two Fermat theorems and Fermat numbers / Fermat -- 7. The "Pell" equation / Fermat -- 8. Power residues / Euler -- 9. Fermat's theorem for n = 3, 4 -- 10. Quadratic residues and the reciprocity theorem / Euler -- 11. The Goldbach theorem / Goldbach -- 12. The reciprocity theorem / Legendre -- Chapter II. Algebra -- 1. Quadratic equations / Al-Khwārizmī -- 2. The triparty / Chuquet -- 3. On cubic equations / Cardan -- 4. The biquadratic equation / Ferrari -- 5. The new algebra / Viète -- 6. The fundamental theorem of algebra / Girard -- 7. The new method / Descartes -- 8. Theory of equations / Descartes -- 9. The roots of an equation / Newton -- 10. The fundamental theorem of algebra / Euler -- 11. On the general theory of equations / Lagrange -- 12. Continued fractions / Legrange -- 13. The fundamental theorem of algebra / Gauss -- 14. Mathematical logic / Leibniz -- Chapter III. Geometry -- 1. The latitude of forms / Oresme -- 2. Trigonometry / Regiomontanus -- 3. Coordinate geometry / Fermat -- 4. The principle of nonhomogeneity / Descartes -- 5. The equation of a curve / Descartes -- 6. Involution and perspective triangles / Desargues -- 7. Theorem on conics / Pascal -- 8. Cubic curves / Newton -- 9. The versiera / Agnesi -- 10. Cramer's paradox / Cramer and Euler -- 11. The bridges of Königsberg -- Chapter IV. Analysis before Newton and Leibniz -- 1. Center of gravity / Stevin -- 2. Integration methods / Kepler -- 3. On infinites and infinitesimals / Galilei -- 4. Accelerated motion / Galilei -- 5. Principle of Cavalieri / Cavalieri -- 6. Integration / Cavalieri -- 7. Integration / Fermat -- 8. Maxima and minima / Fermat -- 9. Volume of an infinite solid / Torricelli -- 10. The cycloid / Roberval -- 11. The integration of sines / Pascal -- 12. Partial integration / Pascal -- 13. Computation of [pi] by successive interpolations / Wallis -- 14. The fundamental theorem of calculus / Barrow -- 15. Evolutes and involutes / Huygens -- Chapter V. Newton, Leibniz, and their school -- 1. The first publication of his differential calculus / Leibniz -- 2. The first publication of his integral calculus / Leibniz -- 3. The fundamental theorem of calculus / Leibniz -- 4. Binomial series / Newton and Gregory -- 5. Prime and ultimate ratios / Newton -- 6. Genita and moments / Newton -- 7. Quadrature of curves / Newton -- 8. The analysis of the infinitesimally small / L'Hôpital -- 9. Sequences and series / Jakob Bernoulli -- 10. Integration / Johann Bernoulli -- 11. The Taylor series / Taylor -- 12. The analyst / Berkeley -- 13. On series and extremes / Maclaurin -- 14. On limits / D'Alembert -- 15. Trigonometry / Euler -- 16. The vibrating string and its partial differential equation / D'Alembert, Euler, Daniel Bernoulli -- 17. Irrationality of [pi] / Lambert -- 18. Addition theorem of elliptic integrals / Fagnano and Euler -- 19. The metaphysics of the calculus / Euler, Landen, Lagrange -- 20. The brachystochrone / Johann and Jakob Bernoulli -- 21. The calculus of variations / Euler -- 22. The calculus of variations / Lagrange -- 23. The two curvatures of a curved surface / Monge
Control code
ocm00442245
Dimensions
27 cm.
Extent
xiv, 427 pages
Lccn
68021986
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
Other physical details
illustrations
System control number
  • (Sirsi) 92930
  • (OCoLC)00442245

Library Locations

    • Waubonsee: Sugar Grove Campus - Todd LibraryBorrow it
      Collins Hall 2nd Floor Waubonsee Community College Route 47 at Waubonsee Drive, Sugar Grove, IL, 60554-9454, US
      41.7974 -88.45785
Processing Feedback ...